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We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized
beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial
compression, triaxial extension, and simple shear. Generalizing a recent result, we show that the material,
despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit,
along all three paths, without dilatancy. The shape of the yield surface in principal stress space differs some-
what from the Mohr-Coulomb prediction, and is more adequately described by the Lade-Duncan or Matsuoka-
Nakai criteria. We study geometric characteristics and force networks under varying stress levels within the
supported range. Although the scalar state variables stay equal to the values observed in systems under
isotropic pressure, the material, once subjected to a deviator stress, possesses some fabric and force distribution
anisotropies. Each kind of anisotropy can be described, in good approximation, by a single parameter. Within
the supported stress range, along each one of the three investigated stress paths, among those three quantities:
deviator stress to mean stress ratio, fabric anisotropy parameter, force anisotropy parameter, any one deter-
mines the values of the two others. The pair correlation function also exhibits short range anisotropy, up to a
distance between bead surfaces of the order of 10% of the diameter. The tensor of elastic moduli is shown to
possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in
monotonic loading paths are also discussed.
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I. INTRODUCTION

The disordered packing of rigid, frictionless spherical
balls epitomizes the large class of materials made of ather-
mal, amorphous assemblies of particles with extremely short
range interactions, such as granular materials �1–5�, concen-
trated suspensions �6,7�, or some glasses �8�. Obviously a
highly idealized material, it is perhaps exclusively studied by
numerical simulations �9–14�. However, its main merit is to
capture the essential role of steric exclusion and packing ge-
ometry in the rheological properties of many different mate-
rials �termed “jammed” �15� in the recent literature�. In gen-
eral, “jammed” particulate systems with strongly repulsive
interactions tend to behave like plastic solids for nearly iso-
tropic stress states, and to flow like liquids once the devia-
toric stress reaches some failure threshold. The solidlike re-
gime of granular materials has long been described and
modeled at the continuum scale in the field of soil mechanics
�2,16,17�.

Assemblies of frictionless and cohesionless grains, in the
rigid limit, have two remarkable properties �18�. First, equi-
librium configurations under specified externally applied
loads minimize potential energy, thereby satisfying geomet-
ric optimization criteria. In particular, equilibrium states un-
der isotropic pressure realize a local maximum of density in
configuration space, subject to impenetrability constraints.
One thus obtains, with assembling procedures fast enough to
bypass incipient crystallization, the so-called random close
packing �RCP� states of sphere packings �11–13�, with solid
fraction ��0.64. Then, the force-carrying contact network
�the backbone� is generically devoid of force indeterminacy,

and even isostatic with circular or spherical objects
�11,12,18�. Consequently, equilibrium forces are geometri-
cally determined, as well as the load increments necessary to
destabilize contact networks and such materials, in the solid
state, tend to deform in a sequence of rearranging events, in
which the contact structure gets continuously broken and re-
paired �18–20�.

In spite of those appealing properties of frictionless
spheres �or disks in two dimensions �2D��, which highlight
the connections between geometry and mechanics and en-
dow them with quite generic features, the study of those
model materials is still incomplete in the published literature.
Numerical investigations have mostly focused on the geom-
etry of RCP states �11–13�, on the possible effects of confin-
ing pressure variations �21,22� and specific elastic properties
�23,24�, on the one hand and on steady-state shear flows
�25–27� on the other hand. The solid range, in which mod-
erate deviator stresses are supported by anisotropic packings
in equilibrium, has hardly been investigated.

In a recent publication �14�, we checked that rigid, fric-
tionless bead packings have a finite macroscopic friction co-
efficient �* in simple shear, and showed them to be devoid
of dilatancy, unlike dense frictional grain assemblies. The
nonvanishing value of �* was attributed to the possibility to
form equilibrium structures with anisotropic contact net-
works. Both static �yield threshold� and dynamic �i.e., mea-
sured in steady shear flows� values of �* were shown to
agree in the limit of large samples.

The present paper further investigates the mechanical
properties of solidlike assemblies of frictionless beads under
quasistatic loading conditions. The model material, initially
assembled under an isotropic pressure, is subjected to differ-
ent deviatoric loading paths �Sec. II�, so that a failure crite-
rion, or yield surface, delineating the stable solid range in
stress space can be identified in the macroscopic limit �Sec.*pierre-emmanuel.peyneau@lcpc.fr
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III�—thus generalizing the friction angle measured in simple
shear. Then we study the geometric and micromechanical
features of equilibrium states throughout the supported range
of stresses, generalizing the results obtained on isotropic
packings to systems with various levels and various direc-
tions of anisotropy �Sec. IV�. Stresses are related to fabric
and force distribution anisotropy parameters by a simple for-
mula. We show how the anomalous elastic moduli tensor of
frictionless, nearly rigid networks is affected by stress aniso-
tropy. A macroscopic stress-strain relation appears to be ap-
proached along the investigated monotonic loading paths, in
spite of large statistical uncertainties. The paper ends with a
discussion �Sec. V�.

II. MODEL MATERIAL AND SIMULATED
MECHANICAL TESTS

A. Constituents and microscopic interactions

We consider granular assemblies made of nearly rigid
equal-sized beads of diameter a and mass m, enclosed in a
cuboidal simulation box. Beads interact through their con-
tacts: the force transmitted is purely normal and is the sum of
a Hertzian elastic term

FN
e = Ẽ�ah3/2/3 �

2

3
KN�h�h �1�

and of a viscous term

FN
v = ��mẼ�1/2�ah�1/4ḣ = ��2mKN�h�ḣ . �2�

h is the normal elastic deflection, Ẽ is a notation for E / �1
−�2�, where E is the Young modulus of the material the
beads are made of, and � its Poisson ratio, and � is the level
of viscous damping. KN�h� is the equivalent spring constant
associated with the elastic force given by Eq. �1�. Notewor-
thily, albeit nonlinear, Eqs. �1� and �2� entail a velocity-
independent normal restitution coefficient eN��� in binary
collisions. All the simulations reported here have been per-
formed with �=0.98 �eN=3.3�10−3�. This model has al-
ready been employed and discussed in several recent publi-
cations �13,14�. Finally, as normal contact forces have no
moment on spherical particles, their rotation is ignored.

B. Boundary conditions and numerical tests

Three different mechanical tests are numerically imple-
mented to probe the solid behavior and the yield stress con-
dition of the material. Those tests involve an external control
on some of the entries of the Cauchy stress tensor �= . For a
granular system at mechanical equilibrium, its expression in-

volves the volume V of the system, the intergranular force F� ij
and the center-to-center vector r�ij for all pairs �i , j� of con-
tacting grains �28,29�:

�= =
1

V
�
i�j

F� ij � r�ij . �3�

Compressive stresses and shrinking strains are positive in
our convention.

In order to avoid any side wall effect, the simulation cell
has periodic boundary conditions in all three directions �pos-
sibly affected by the Lees-Edwards procedure �30� when a
nondiagonal stress component is imposed�. Simulation cell
edges have lengths denoted as �L	�1
	
3 along the three co-
ordinate directions of orthonormal basis �e�	�1
	
3. Details
on the equations governing the L	’s and the possible shear
strain variable may be found in Ref. �14�.

Before performing a mechanical test, an initial configura-
tion is prepared under isotropic pressure P with the same
procedure as in Refs. �13,14�. A granular gas of hard spheres,
initially positioned on an fcc lattice, is thermalized with col-
lisions that preserve kinetic energy and then isotropically
compressed �with the dissipative mechanical model, Eqs. �1�
and �2�� until a mechanical equilibrium state is reached under
presssure P. In the limit of small P, these isotropic equili-
brated configurations are the RCP states, as studied in Refs.
�11–13�.

Once prepared, the material may be subjected to various
loading paths. Three distinct quasistatic mechanical tests
have been implemented, on externally applying stress tensor:
�i� axisymmetric triaxial compression �TC� test: �= =�1e�1
� e�1+�2e�2 � e�2+�3e�3 � e�3, with �1=�2��3; �ii� axisym-
metric triaxial extension �TE� test: �= =�1e�1 � e�1+�2e�2 � e�2
+�3e�3 � e�3 with �1=�2��3; and �iii� shear �S� test: �=
= P�e�1 � e�1+e�2 � e�2+e�3 � e�3�+�e�1 � e�2+e�2 � e�1�.

Each test is employed to assess the material behavior in a
particular direction of the principal stress space, which is the
three-dimensional Euclidean space spanned by the stress ten-
sor eigenvalues �1, �2, and �3 �the principal stresses�. The
principal stresses, if listed in decreasing order, are also de-
noted as �I��II��III in the sequel. In equilibrium under the
prescribed stress loading paths �TC, TE, and S tests� their
values are listed in Table I.

In all implemented tests, pressure P=Tr �= /3 is kept con-
stant while deviator stress �= − P1= is stepwise increased, with
increments ��= . We chose to apply ��3=0.005�P �or
−0.005�P� in TC �respectively, TE� tests, whence ��1
=��2= �0.0025�P and �=0.005�P in S tests. In princi-
pal stress space, the load therefore remains in a given devia-
toric plane, i.e., a plane orthogonal to the trisectrix �1=�2
=�3. The three studied stress paths are represented in Fig. 1.

For each prescribed stress tensor �= , one waits until a sat-
isfactory mechanical equilibrium is reached before incre-
menting �= . A system is deemed equilibrated if the resultant
force is zero on each bead, with a tolerance set to 10−4a2P,
and �	�=�	� for each imposed stress component, with a
relative error smaller than 10−4. The calculation is stopped if
the packing remains out of mechanical equilibrium under the
imposed stress tensor after 5�107 time steps and a total

TABLE I. Principal stresses for the triaxial compression, triaxial
extension, and shear tests.

Test �I �II �III

TC �33 �11 �11

TE �11 �11 �33

S �33+ 	�12	 �33 �33− 	�12	
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strain of 10%. The last value of �= for which an equilibrium
state was reached is kept as an estimate of the failure thresh-
old. This procedure is schematized in Fig. 2.

The same simulations are carried out on a number of dif-
ferent randomly assembled initial configurations to achieve
statistical representativity. Numerical results are averages
over available samples, the error bars shown on the figures
extending to one r.m.s. sample-to-sample deviation on each
side of the mean value.

C. Dimensionless control parameters

Simulation results depend on a small set of dimensionless
numbers, which combine material properties and mechanical
test parameters. Most definitions recalled below are the same
as in Refs. �13,14�.

The stiffness parameter, defined as

� = 
 Ẽ

P
�2/3

,

is such that �−1 measures the typical elastic deflection rela-
tive to particle diameter h /a. Most simulations are conducted

with �=3.9�104 �corresponding to glass beads under P
=10 kPa �13,14��. Half of the S tests have also been con-
ducted with �=8.4�103. From Ref. �14�, we know that with
such stiffness levels, the difference between the various ob-
servables measured in the simulations and their values in the
rigid limit of �→ +� is smaller than the statistical uncer-
tainty.

Although some dissipation is necessary in the model to
reach mechanical equilibrium, the level of viscous damping �
is irrelevant in the quasistatic limit �14�. Here it is set to 0.98,
whence a low restitution coefficient eN=3.3�10−3.

When the cell is being deformed, with strain rate �̇, the
importance of inertia effects is characterized by the inertial
number I, defined, as in Refs. �14,25,27,31�, by

I = �̇� m

Pa
.

The quasistatic limit corresponds to I→0. In order to avoid
excessive acceleration of the system, a control on �̇ is en-
forced, as in Refs. �13,22�, so that I never exceeds 10−4.

Ratio �� / P of deviator step to pressure is another control
parameter, which should be kept to small values to track the
quasistatic evolution of the system as accurately as possible.
The values given in Sec. II B were observed to be satisfac-
tory in this respect. As an example, TC tests with ��3 / P
=5�10−3 and ��3 / P=2�10−2 yield consistent results.

Finally, finite-size effects are expected �14�, hence a fifth
dimensionless parameter in the problem, the number N of
particles. Values of the dimensionless control parameters in
the presently reported simulations are listed in Table II.

We are chiefly interested in the macroscopic geometric
limit, in which all mechanical properties are expected to de-
pend on packing geometry alone, as announced in the Intro-
duction. It was defined in Ref. �14� as the triple limit of �
→ +� �rigid limit�, I→0 �quasistatic limit� and N→ +�
�thermodynamic limit�. This limit was shown in Ref. �14� to
be correctly approached with the range of parameters dis-
played in Table II.

III. FAILURE

The material being initially assembled in an isotropic
state, the range of stress tensors it will sustain in the solid
state can be defined in principal stress space. From the
known behavior of cohesionless granular materials �with
friction in the contacts� �17,32–34� it is expected—and it was
explicitly checked in the case of S tests �14�—that the
boundary of the set of supported stresses is reached on in-
creasing the deviatoric part of �= , away from the isotropic
state. It is customary to define a loading function �or yield
function� f of principal stresses ��1 ,�2 ,�3�, such that f�0
defines the region of supported stresses �which is believed to

FIG. 1. �Color online� Sketch of the directions tested in a devia-
toric plane with a triaxial compression test �with �3=�I�, a triaxial
extension test �with �3=�III�, and a shear test �with ��1 ,�2 ,�3�
= ��I ,�III ,�II��.

FIG. 2. �Color online� Stepwise procedure employed to assess
the failure properties of the material.

TABLE II. Values taken by the dimensionless parameters.

� I � �� / P N

�8.4�103 ,3.9�104 �10−4 0.98 0.005 �1372,4000,8788
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be convex in general �32�� and f =0 its boundary surface.
For an assembly of perfectly rigid ��= +��, noncohesive

grains, the absence of stress scale implies that f���= �= f��= �
for all ��0. Thus, the failure surface of such a material has
a conical shape in principal stress space. We assume this
property to hold for our simulated system, which is close to
the rigid limit. Consequently, it is sufficient to determine the
intersection of the failure surface with one deviatoric plane,
that is the failure curve. Furthermore, because of the isotro-
pic preparation method employed, f is a symmetric function
of ��1 ,�2 ,�3� and the failure curve is left invariant by all
permutations of ��1 ,�2 ,�3�.

The �cohesionless� Mohr-Coulomb model

fMC��= � = �I − �III − ��I + �III�sin �

is often assumed �at least implicitly� true for granular mate-
rials �35�. Numerous studies have been devoted to the mac-
roscopic friction of sheared granular assemblies in various
geometries �31�, and it is tempting to assume that the mea-
sured angle corresponds to friction angle � in a Mohr-
Coulomb model that would describe the failure properties of
the material. The fourth column of Table III displays the
macroscopic friction angles measured with the three loading
paths employed. It shows that � depends on N, as already
observed in Ref. �14�, but also on the kind of mechanical test
employed. Consequently, the material cannot be described by
a Mohr-Coulomb criterion. Although TC and TE tests are not
sufficient to rule out the Mohr-Coulomb model since �TE

−�TC is below the statistical uncertainties vitiating the re-
sults, the comparison with the shear angles unambiguously
invalidates this criterion.

It would be appealing if one could characterize the failure
properties of the material with a single parameter that would
not depend on the applied load direction. Such an attempt
already proved successful for assemblies of frictional equal-
sized beads �33,34�, whose failure curve was successfully
modeled by a Lade-Duncan criterion �36�

fLD��= � =
��I + �II + �III�3

�I�II�III
− k . �4�

One should have k�27 in Eq. �4� if condition f
0 is to
define a nonempty cone of supported stresses �with k=27
only isotropic stresses would be possible in equilibrium and
the material would behave similar to a liquid�. According to
Table III, this failure criterion also works well in the friction-
less case: the values of k deduced from each of the three
loading paths �see Table IV� agree with one another.

Making use of the aforementioned permutation symmetry,
the stresses at failure computed for N=1372 are plotted in
Fig. 3, in the deviatoric plane, with the Lade-Duncan curve
corresponding to k�1372� and the three Mohr-Coulomb fail-
ure curves pertaining to the three distinct numerical tests
performed. The Lade-Duncan criterion is clearly the best
model.

Failure properties are, however, dependent on system size
�Table III�. Figure 4 plots the principal stresses at failure in

TABLE III. Macroscopic friction angle � and Lade-Duncan pa-
rameter k, measured just before failure on SN distinct initial con-
figurations, for different mechanical tests and different system sizes.
�� and �k are the corresponding standard deviations.

Test N SN � �� k �k

1372 8 8.3° 0.6° 27.80 0.11

TC 4000 8 6.8° 0.5° 27.52 0.08

8788 8 6.0° 0.2° 27.41 0.03

1372 8 8.6° 0.5° 27.81 0.10

TE 4000 8 6.9° 0.2° 27.52 0.02

8788 8 6.0° 0.4° 27.40 0.05

1372 6 9.7° 0.3° 27.80 0.04

S 4000 10 7.8° 0.3° 27.51 0.07

8788 6 7.0° 0.4° 27.41 0.04

TABLE IV. Mohr-Coulomb and Lade-Duncan parameters for
the different loading paths, as functions of applied stress compo-
nents. sin �, as defined in the second column, is used as an inter-
mediate variable in the expression of parameter k in the third one.

Test sin � k

TC �3−�1

�3+�1

�3−sin ��3

1−sin �−sin2 �+sin3 �

TE �1−�3

�1+�3

�3+sin ��3

1+sin �−sin2 �−sin3 �

S 

P

27

1−sin2 �

FIG. 3. �Color online� Calculated points with their error bars,
Lade-Duncan criterion �k=27.80, blue solid line� and cohesionless
Mohr-Coulomb criteria corresponding to TC ��=8.3°, red dashed
line�, TE ��=8.6°, red dotted line�, and S tests ��=9.7°, red dotted
and dashed line� for an assembly of N=1372 particles.
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the deviatoric plane for N=1372,4000,8788 with the corre-
sponding Lade-Duncan fits. The domain bounded by the fail-
ure limit decreases with increasing N. To evaluate the failure
curve in the macroscopic limit of N→ +�, principal stresses
obtained in finite-size samples are extrapolated, assuming a
linear dependence with N−1/2. This assumption is proved to
be statistically valid thanks to �2 calculations �37� and the
resulting principal stresses are plotted in Fig. 4. A Lade-
Duncan fit of these extrapolated points with parameter k�
=27.22�0.02 works well. As k��27, the failure surface is
not reduced to the trisectrix in the N→ +� limit, and mac-
roscopic systems can be equilibrated under moderately an-
isotropic loads, in agreement with Ref. �14�. The value taken
by the Lade-Duncan parameter in the N→ +� limit corre-
sponds to ��

TC=4.4° �0.2° in triaxial compression, ��
TE

=4.5° �0.3° in triaxial extension, and ��
S =5.2° �0.3° for

shear tests. The latter value agrees with the static friction
angle given in Ref. �14� in the macroscopic geometric limit.

One can observe that the shape of the criterion in the
deviatoric plane becomes more rounded with increasing N.
Since other criteria predict a nearly circular failure curve for
small deviatoric strength �38�, other forms than the Lade-
Duncan yield function could be fitted to the data in the mac-
roscopic limit. First of all, we observed that the Drücker-
Prager criterion �39� �whose shape is always circular in the
deviatoric plane� does not correctly fit our results in the N
→ +� limit. The Matsuoka-Nakai criterion �40�, a model
specifically tailored to capture the failure properties of some
sands, defined as

fMN��= � =
��I + �II + �III���I�II + �II�III + �III�I�

��I�II�III�
− m ,

accurately fits the data extrapolated in the macroscopic limit
�with m=9.05�0.01�. Note, however, that this criterion is

not suitable to describe failure in the smallest finite-size sys-
tems studied.

In general, the expressions of failure criteria �Lade-
Duncan, Matsuoka-Nakai, or Mohr-Coulomb� are purely
phenomenological, and their justification is to provide a con-
venient fit function. In the present case, stress anisotropies
will be related to other internal variables in Sec. IV, but a
prediction of the shape of the failure curve in the deviatoric
plane �related to complex geometric properties of sphere
packings� is currently beyond our reach.

IV. SOLID BEHAVIOR AND MICROSTRUCTURE:
THE ROAD TO FAILURE

We now study the evolution of the material within the
solid range, from the initial isotropic state to the failure limit,
with a particular emphasis on microscopic aspects. We first
investigate in Sec. IV A how the scalar variables character-
izing the internal state of the packing evolve with growing
deviator stress. Those variables include solid fraction �,
connectivity and coordination number, orientation-averaged
pair correlations and force distributions, and were exten-
sively studied in isotropic RCP states �12,13�. Structural and
force anisotropies �41–44� are studied in Sec. IV B. In the
spirit of Ref. �45�, we will show how stresses relate to an-
isotropy parameters. Then, Sec. IV C reports on the elastic
moduli measured in nearly rigid anisotropic packings, with
results generalizing previous numerical observations on iso-
tropic RCP state elastic properties. Finally, the existence of a
well-defined stress-strain law in the thermodynamic limit
�N→ +�� is discussed in Sec. IV D.

A. Scalar quantities

The typical evolution of volume fraction � with the
deviatoric stress applied, characterized by sin ����I
−�III� / ��I+�III�, is depicted in Fig. 5. It shows that whatever
the load applied, � remains approximately equal to �RCP
�0.639 from the initial isotropic state to the failure thresh-
old. In particular, the relative variations of � remain smaller
by more than an order of magnitude than the deviatoric

FIG. 4. �Color online� Principal stresses at failure and corre-
sponding Lade-Duncan fits for N=1372, 4000, and 8788 �red
dashed lines�. The blue solid curve corresponds to the macroscopic
limit �k=27.22�, whereas the two blue dotted curves, for k=27.20
and 27.24, bound the uncertainty interval.

FIG. 5. �Color online� Volume fraction � as a function of sin �
�as defined in Table IV� for N=8788 and �=3.9�104. Solid
squares are for one TC test, solid triangles for one TE test and
circles for one S test. Curves are stopped at the value of sin �
corresponding to the failure limit.
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strains �see Sec. IV D�. This is consistent with Ref. �14�
which showed the material to be devoid of dilatancy in the
macroscopic geometric limit. � evolves quite erratically
with sin �; however, � seems to increase systematically
when the applied stress is moderately anisotropic, then it
reaches a maximum and finally, it decreases when the mate-
rial approaches its failure limit. We have currently no con-
vincing explanation for this phenomenon. The jumps in �
are correlated to network rearrangements: we checked that
the greater the jump, the more important the change in the
contact list.

The connectivity of the contact network is the set �pn� of
probabilities for one grain to be involved in n contact forces.
The coordination number z is linked to �pn� through z
=�nnpn. Average fractions pn have been recorded for the
three loading paths with N=1372, 4000, and 8788. At equi-
librium, whatever the deviator applied, the set �pn� is found
identical to the distribution measured on frictionless isotropic
packings �13�. For such packings, p1, p2, and p3 vanish, be-
cause normal repulsive forces on a bead with less than four
contacts cannot balance. As in the case of isotropic packings,
some grains, the rattlers, do not belong to the force-carrying
structure: their proportion is estimated at p0�1.3%, which is
close to the value obtained with isotropic packings �13�. In
all simulations carried out with �=3.9�104, the backbone
coordination number z*=z�1− p0�−1 remains equal to
6.08�0.03 between the initial isotropic state and the failure
limit. By the isostaticity property of the backbone, z* tends
toward 6 in the �→ +� limit �11,13,14�.

If we now replace the contact network by network Ch
defined on declaring a bond to join all pairs of grains sepa-

rated by a distance smaller than h, then its coordination num-
ber z�h� is drawn as a function of h /a in Fig. 6 at the failure
limit. Curves corresponding to the three studied loading
paths are identical. z�h� starts from coordination number z at
h=0 and is the cumulated integral of the pair correlation
function up to distance a+h between sphere centers. One
gets z�h�−z�0�� �h /a�0.6 for h /a�1 in all equilibrated pack-
ings. The same power law with exponent 0.6 has already
been observed to fit z�h� data in the same range of gap h with
isotropic packings �RCP states� �12,13�. �No theoretical basis
has been proposed for this power law, the prefactor and the
exponent of which might slightly depend on the range of h
fitted and on the treatment of rattlers �13,23�.�

The probability distribution functions �PDFs� p�f� of nor-
malized contact forces f =F / �F� have a similar shape as re-
ported in many numerical �12,13,46–48� and some experi-
mental �49,50� studies on granular media. p�f� first exhibits a
slight increase, up to f �0.5, and then it decreases, roughly
exponentially for large f . Remarkably, thanks to
Kolmogorov-Smirnov tests �37�, we observed that all PDFs
in the equilibrium configurations obtained for the different
simulated stress states coincide. Neither the number of
grains, nor the direction of the loading path, nor the proxim-
ity of the failure limit alter the force distributions, which
remain statistically indistinguishable. p�f� thus coincides,
within statistical uncertainties, with the form parametrized,
e.g., in Ref. �12�. As the backbone is isostatic, p�f� is geo-
metrically determined in the rigid limit. The PDF may in
particular be characterized by its moments, which we denote,
for any x�0, as

Z�x� = �fx� =
�Fx�
�F�x , �5�

and we obtain, e.g., Z�2�=1.53�0.02 and Z�5 /3�
=1.29�0.01 �those results will be useful in Sec. IV C�. Fi-
nally, using the same indicators as in Ref. �13�, we observed
no tendency towards the formation of locally crystalline pat-
terns in the configurations under varying deviator stresses.

B. Anisotropy

Previous works showed that the very origin of shear
strength in granular materials is the anisotropy, both struc-
tural and mechanical, induced by the deviatoric stress �51�.
We now explore this connection in the particular case of
frictionless, rigid bead assemblies.

Mathematically, material anisotropy can be characterized
by the joint probability density function P�n� ,F� of finding an
intergranular contact oriented along the unit vector n� and
carrying a force of intensity F. This quantity is of central
importance since it intervenes in the expression of the
Cauchy stress tensor. Bearing in mind that ��1 and denot-
ing the number of contacts by Nc, Eq. �3� can be rewritten as

�= =
Nca

V
�F� � n�� =

Nca

V
� d�dFP�n� ,F�Fn� � n�

=
Nca

V
� d�E�n���F�n�n� � n� . �6�

FIG. 6. �Color online� Average coordination number z�h� of net-
work Ch as a function of h /a, computed from some equilibrated
configurations near their failure limit under TC, TE, and S tests. All
three group of data collapse on a single curve. Inset: power law
behavior of z�h�−z�0� for h /a�1, revealed by a double logarithmic
plot.
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�F�n� is the angular force density �it is equal to �F� / �4�� in
the isotropic case� and E�n�� is the probability density func-
tion of finding a contact along n� .

1. Structural anisotropy and its relation to stress ratios

The anisotropy of the contact network is described by
E�n��. E is defined on the unit sphere of R3, so it can be
expanded in a series of spherical harmonics. Since contacts
are undirected, odd order coefficients in the expansion van-
ish. At the lowest order, the expansion is restricted to the
spherical harmonics of order 2 and the coefficients are re-
lated to the second-order fabric tensor F= ��n� � n��. Further-
more, for shear tests, it was shown in Ref. �14� that a single
anisotropic term of the expansion dominates

E�n�� �
1

4�
+ F12dxy��,�� �7�

with dxy�� ,��=15 sin2 � sin�2�� / �8�� �� is the colatitude
angle and � the longitude angle of the spherical coordinates�.
In the case of a triaxial test, by axial symmetry, the expan-
sion of E in spherical harmonics up to the second order reads

E�n�� �
1

4�
+ 
F33 −

1

3
�dz2��,�� �8�

with dz2 =15�3 cos2 �−1� / �16��.
Figure 7 shows how the anisotropic term evolves with

��33−�11� / ��33+�11� ��11 and �33 are principal stresses un-
der a triaxial load�, for systems of two different sizes sub-
jected to a TC or TE test. Whatever the test performed, the
absolute value of the anisotropic term increases with the ap-
plied deviator intensity. An analysis of the regression of fluc-
tuations for the data of Fig. 7 indicates that the evolution of
the anisotropic terms with stress deviator intensity tends to a
well-defined curve in the macroscopic limit. The dependence
is roughly linear, even if one can notice that the slope of the

curves seems to change around the boundaries of the solid
range in the limit of N→ +�. �Other expressions involving
principal stress ratios could have been used to characterize
stress anisotropy�. Although the maximum value of the an-
isotropy parameter is size dependent, the slope Sfab of the
straight line fitting in the macroscopic solid range the
�sample-averaged� anisotropy parameter as a function of
��33−�11� / ��33+�11� for triaxial tests, and of �12 /�22 for
shear tests, does not depend on N if the number of grains is
large enough. For N�4000, numerical simulation yield Sfab
=0.197�0.010 for TC tests, Sfab=0.210�0.015 for TE tests,
and Sfab=0.158�0.015 for S tests.

The range of anisotropic pair correlations can be studied
by considering the fabric tensor of network Ch �defined in
Sec. IV A� as a function of h. Anisotropy parameters are
plotted as functions of h in Fig. 8, for maximum stress
anisotropies �at the failure limit�. They first decrease for in-
creasing h, and reach zero near h /a=0.2. The small values of
opposite sign measured at larger distances are of the order of
the statistical noise ��0.001� observed on isotropic configu-
rations and should be interpreted with care. The spatial dis-
tribution of near, but distant neighbors thus tends to cancel
the anisotropy of the distribution of contacting ones. The
material anisotropy is short-ranged. In particular it is very
nearly negligible on averaging over the complete first neigh-
bor shell �i.e., up to the distance corresponding to the first
minimum in the pair correlation function, h /a�0.35 from
Refs. �12,13��.

2. Force anisotropy and its relation to stress ratios

The mechanical anisotropy is described by the angular
dependence of �F�n�. Similar to E�n��, it can be expanded in a
series of spherical harmonics of even order. To make things
easier, only the expansion up to the second order is consid-
ered. As for the structural anisotropy, a single term, with the
same symmetry, was assumed to dominate. For shear tests

�F�n� � 
 1

4�
+ H12dxy��,����F� �9�

and for triaxial tests

FIG. 7. �Color online� Average evolution of the structural aniso-
tropic term with r= ��33−�11� / ��33+�11� under TC �r�0� and TE
�r�0� tests. Red crosses correspond to N=1372 and blue squares to
N=8788.

FIG. 8. �Color online� Dominant structural anisotropic term at
the failure limit as a function of the gap h with N=8788 for TC tests
�circles�, TE tests �crosses�, and S tests �triangles�.
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�F�n� � 
 1

4�
+ H33dz2��,����F� �10�

with �F� the average force intensity.
Force anisotropy parameters H12 and H33 are obtained by

dividing the unit sphere in small regions. This allows to com-
pute some values of �F�n�, and coefficients H12 and H33 are
then derived by calculating the scalar product—defined as
�f ,g�=��d� / �4���f�� ,��g�� ,��, with f and g two functions
defined on the unit sphere—of �F�n� with dxy and dz2.

The build-up of H33 under a triaxial load for two different
system sizes is displayed on Fig. 9. It is very similar to the
build-up of F33−1 /3. The numerical data evidence a one-to-
one correspondence with stress anisotropy, which is approxi-
mately linear for moderate deviators. The slope Sfor of the
plot of Fig. 9 seems to be independent of N when N is suf-
ficiently large. With N�4000, one has Sfor=0.250�0.012
for TC tests, Sfor=0.235�0.015 for TE tests, and Sfor
=0.173�0.014 for S tests �for which H12 relates to stresses
approximately as H12=Sfor

�12

�22
�.

3. General connection between stress and anisotropy

The observed relations between stress and fabric �Sec.
IV B 1� or force �Sec. IV B 2� anisotropies were not, to our
knowledge, previously reported in the literature. We argue
below in Sec. IV D that they are specific to frictionless grains
in the rigid limit.

Yet, a more general connection between stress and both
fabric and force anisotropies can be derived on using spheri-
cal harmonics expansions for the relevant stress components,
as deduced from Eqs. �8� and �10� for triaxial tests and from
Eqs. �7� and �9� for shear tests. Such a relation was repeat-
edly used for frictional systems, most often in 2D �44,45,51�.

In the case of triaxial tests, keeping only the terms up to
the second order yields

E�n�� � �F�n� � � 1

16�2 + 
H33 + F33 − 1/3
4�

�dz2��,����F� .

Combining this relation with Eqs. �6�, one gets

�11 �
Nca�F�

V
� 1

12�
−

1

8�
�H33 + F33 − 1/3�� ,

�33 �
Nca�F�

V
� 1

12�
+

1

4�
�H33 + F33 − 1/3�� .

Consequently, one obtains

�33

�11
� 2

H33 + F33

1 − H33 − F33
. �11�

In the case of shear tests, neglecting terms of order larger
than 2 yields

E�n�� � �F�n� � � 1

16�2 + 
F12 + H12

4�
�dxy��,����F� .

By inserting the above equation in Eq. �6�, one gets

�12 �
F12 + H12

4�

Nca�F�
V

,

�22 �
1

12�

Nca�F�
V

,

hence the result

�12

�22
� 3�F12 + H12� . �12�

Although Eqs. �11� and �12� are simple approximations, they
work surprisingly well, as shown by Fig. 10.

In Secs. IV B 1 and IV B 2, fabric and force anisotropies
were separately related to stress ratio �with approximate, lin-

FIG. 9. �Color online� Average evolution of the mechanical an-
isotropic term with r= ��33−�11� / ��33+�11� under TC �r�0� and
TE �r�0� tests. Red crosses correspond to N=1372 and blue
squares to N=8788.

FIG. 10. �Color online� Numerical test of the approximations
given by Eqs. �11� and �12� with N=8788 for TC tests �circles�, TE
tests �crosses�, and S tests �triangles�.
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ear relations involving parameters Sfab and Sfor�. Thus one
should check for the consistency between such observations
and relations �11� and �12�. In the case of triaxial tests, on
writing down all quantities to first order in the small aniso-
tropy parameters H33 and F33−1 /3, one obtains the consis-
tence condition

Sfor + Sfab =
4

9
. �13�

Similarly, for S tests one should have

Sfor + Sfab =
1

3
. �14�

The values of Sfab and Sfor obtained in Secs. IV B 1 and
IV B 2 satisfy conditions �13� and �14� with good accuracy.

The simple connection between stress and anisotropy pa-
rameters expressed by Eqs. �11� and �12� emphasizes the
microscopic origin of a macroscopic quantity �a stress ratio
in this case�. In view of the different internal fabric symme-
tries in the triaxial and the shear tests, it is finally not sur-
prising that the corresponding friction angles differ �whence
the inadequacy of the Mohr-Coulomb criterion, Sec. III�.

In granular materials with friction, the shape of the par-
ticles influences the relative roles of geometry and mechan-
ics in the sustained stress �45�. For frictionless spherical
grains, near the failure limit, we find that the parameters
describing both anisotropies are approximately equal, so that
half of stress ratio �33 /�11 or �12 /�22 is explained by geo-
metric anisotropy and the other half by mechanical aniso-
tropy. Despite those simple relations between stresses and
anisotropy parameters, theoretically predicting the stress ra-
tio at failure still remains a challenge.

C. Elastic moduli

The motivation for computing elastic moduli is twofold.
First, elastic properties are usually more easily measured in
the laboratory than geometric data such as near neighbor
correlations and coordination numbers, as discussed in Ref.
�24�. Then, the elastic moduli of frictionless bead packs un-
der isotropic stresses were studied by numerical simulations
�11,24�, and shown to exhibit singular properties, which we
now seek to generalize to anisotropic stress states. Specifi-
cally, while the bulk modulus, B, shows little difference with
well coordinated frictional packings �24�, the shear modulus,
G, is anomalously small. G /B tends to vary proportionally to
the degree of force indeterminacy �24,52�, which vanishes in
the rigid limit, as �−1/2. Isotropic frictionless bead packs also
possess stiffness matrices �or “dynamical matrices”� with an
anomalous distribution of eigenmode frequencies �11�, which
stems from the nearly isostatic character of the contact net-
work �53�.

For simplicity, we restrict our investigations to the elastic
moduli of equilibrium configurations obtained in TC or TE
tests. They are numerically evaluated on building the stiff-
ness matrix of contact networks and solving linear systems
of equations for displacements in response to small load in-
crements, as explained in Ref. �24�. The results are devoid of

size effects and sample to sample fluctuations regress as N
increases. There are five independent elastic constants in
such cases �a number which would increase to nine for
simple shear tests�, which express a linear relation between
stress increments ��ij and strains �ij, from a reference equi-
librium anisotropic state, as

�
��11

��22

��33

��23

��31

��12

� = �
C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 2C44 0 0

0 0 0 0 2C44 0

0 0 0 0 0 2C55

��
�11

�22

�33

�23

�31

�12

� .

�15�

The material symmetries—invariance by rotation around
axis 3 and by symmetry about all three planes of
coordinates—determine the form of the matrix of elastic
moduli in Eq. �15�, and also request that C11−C12=2C55 �ex-
pressing the equality of two shear moduli in plane 1,2�. Such
symmetries are very well satisfied �one has, e.g., C13=C23
with relative errors smaller than 10−3 for N=8788�. The
moduli in the initial isotropic state all relate to B and G as
C11=B+4G /3=C33, C12=B−2G /3=C13, C44=C55=G.
Then, longitudinal moduli �i.e., Cii, with i=1,2 ,3� are larger
in the direction of the major principal stress: thus one ob-
serves C33�C11 in triaxial compression and the opposite in-
equality in triaxial extension. This corresponds to different
longitudinal sound wave velocities �Cii / m � m denoting the
mass density of the material� propagating in direction 3 and
in the orthogonal plane. Such anisotropies of the elastic
moduli were reported in the literature on sands �54–56� and
bead packings �57�. They can be attributed to the effect of
both anisotropies, of fabric and forces, evidenced in Sec.
IV B: the material is stiffer in the principal stress direction
because it is favored in the distribution of contact orienta-
tions, and also because contacts nearly parallel to this direc-
tion tend to carry larger forces. As Hertz’s law, Eq. �1�, en-
tails that KN�FN

1/3, such contacts are stiffer. To sort out the
possible effects of fabric and force anisotropies, we com-
puted elastic moduli both for the Hertzian contact model and
for linear contact elasticity, with some constant, force-
independent contact stiffness KN. �As the packing geometry
is very nearly that of a set of rigid beads, statistically similar
configurations would have been obtained on simulating bead
assemblies with linear unilateral elastic contact forces�. We
focus in the sequel on the upper left square block of order 3
within the matrix of moduli written in Eq. �15�, which we
denote as c= . All of its elements are larger by about 2 orders
of magnitude than shear moduli C44 and C55, whatever the
stress anisotropy. The ratio of all other elements of matrix c=
to C33 are plotted in Fig. 11, for Hertzian and for linear
contact elasticity.

The variations of C11 /C33 with �33 /�11 shown on Fig. 11
are qualitatively expected. More surprisingly, since the
moduli evaluated with linear contact elasticity are not sensi-
tive to force anisotropy, the dependence of such ratios on
stress anisotropy is about the same for both contact laws.
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Such results, as we now explain, are due to the peculiar
nature of matrix c= . Let ŝ1, ŝ2, ŝ3 denote unit vectors in the
space of stress or strain tensors with eigendirections parallel
to the coordinate directions, forming an orthonormal basis in
which coordinates are ��ii �i=1,2 ,3� �or �ii� for stress �re-
spectively, strain� increments. Matrix c= defines a linear op-
erator within this space. Under isotropic stresses, c= has ei-

genvalues CI=3B, CII=CIII=2G, and eigenvectors are Ŝ1

= �ŝ1+ ŝ2+ ŝ3� /�3, and any pair of vectors orthogonal to Ŝ1.

The increment of stress in direction Ŝ1 is proportional to the
preexisting equilibrium stress tensor �denoted here as vector

P�3Ŝ1�. As an approximation, since CI�CII and CI�CIII,
one may write

c= � CIŜ1 � Ŝ1, �16�

bearing in mind that the right-hand side is of course a singu-
lar matrix. On using Eq. �16�, all moduli would be equal to B
in the isotropic state and all ratios equal to 1 in Fig. 11 for
�11=�33, which is very nearly satisfied. In Ref. �24�, it was
argued that the “dominant” modulus, B is insensitive to the
“barely rigid” character of the nearly isostatic contact net-
work because it expresses the response to a load increment
proportional to the preexisting load. We now apply similar

ideas to anisotropic stress states. We first define Ŝ1 as the unit
vector proportional to the preexisting, equilibrium stress. The
loading parameter in triaxial loading paths may be defined as
	 such that �11=�22= �1−	�P while �33= �1+2	�P. We thus
set

Ŝ1 =
1

�3 + 6	2
��1 − 	��ŝ1 + ŝ2� + �1 + 2	�ŝ3� . �17�

We observed Ŝ1 to be, with very good approximation, an
eigenvector of c= , with eigenvalue CI close to its value in the
isotropic state. Due to the material symmetries in TC and TE

tests, the second eigenvector should be Ŝ2= �ŝ1− ŝ2� /�2, a
property also well satisfied by the numerical data—and the

third one is of course orthogonal to Ŝ1 and Ŝ2. We observed
the corresponding eigenvalues CII and CIII to remain below
0.02�CI in all cases, whatever the stress anisotropy and the
contact law �Hertzian or linear�. Thus it is possible to ap-
proximate matrix c= on using relation �16�, with definition

�17� for vector Ŝ1. This yields theoretical expressions for the
ratios between moduli

C11

C33
�

�1 − 	�2

�1 + 2	�2 �
C12

C33
,

C13

C33
�

1 − 	

1 + 2	
. �18�

Figure 11 shows that those approximations are quite accu-
rate. Thus stress anisotropies influence the tensor of elastic
moduli in a peculiar way, due to its nearly uniaxial, singular
structure, which is independent of the contact law. In a good
approximation all moduli, except the very small, singular
ones, are proportional to CI with coefficients that are deter-
mined by the stress state.

On exploiting the isostaticity property of the contact net-
work, it turns out that the dominant eigenvalue of tensor c= ,
CI can be written, in very good accuracy, as a simple func-
tion of solid fraction �, coordination number z and moments
of the �geometrically determined� force distribution. Such a
relation was established for the bulk modulus B of isotropic
states in Ref. �24�, where it is called the Reuss estimate. In
general, it provides a lower bound to the modulus, which
becomes exact when force increments are proportional to
preexisting forces. This condition is exactly fulfilled by the
response of isostatic contact networks to an increment of
stress tensor that is proportional to the preexisting stress ten-
sor. On adapting the approach followed in Ref. �24� to the
case of anisotropic stress states, one readily obtains, in the
case of Hertzian contacts

CI = CI
H =

31/3

2Z�5/3�

 z�

�
�2/3

Ẽ2/3P1/3. �19�

For linear contact elasticity, the corresponding prediction
reads

CI = CI
L =

z�KN

�aZ�2�
. �20�

Z�5 /3� and Z�2� values are given after Eq. �5�. All quantities
appearing in those formulas were observed in Sec. IV A to
remain constant throughout the range of supported stresses.
Thus CI should not depend on principal stress ratio. Figure
12 shows that the numerical data abide very well by the
predictions of Eqs. �19� and �20�. Thus, all moduli, except
the soft ones that vanish in the rigid limit, are predicted. In
the case of simple shear, we expect similar properties to ap-

ply, on adequately redefining Ŝ1 in the direction of the ap-
plied load. In general, for arbitrary applied stresses within
the supported range f��= ��0 defined in Sec. III, one should
have a nearly uniaxial tensor of elastic moduli.

The stress increment or strain range for elastic response is
expected to shrink to naught in the double limit of �→ +�
and N→�, similar to the stability range of a contact network
�20�. Thus, in practice, in order to observe the peculiar elas-
tic properties of nearly rigid frictionless bead assemblies, one

FIG. 11. �Color online� Ratios C11 /C33 �red�, C13 /C33 �pink�,
and C12 /C33 �blue�, in TE and TC tests, versus principal stress ratio,
for Hertzian �square dots� and linear �round dots� contact elasticity
and N=8788. Continuous �black� lines correspond to the predic-
tions of Eqs. �18�.
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should adequately choose stiffness level �, which should be
large enough to approach the rigid limit but small enough for
some elastic response to be measurable. Interestingly, poorly
coordinated packings of frictional disks �58,59� or spheres
�24,60� tend to exhibit similar elastic anomalies, although,
most often, in a weakened form, because such systems do
not spontaneously form isostatic contact structures in the
rigid limit �13�. Even though truly frictionless particles do
not exist in the laboratory, our results might therefore bear
some relevance in more general situations of contact net-
works with quite a small level of force indeterminacy.

D. Constitutive relations

The observations of Secs. IV B and IV C are strongly
reminiscent of the results obtained on dealing with exactly
rigid frictionless grains �20,61�. If contacts are rigid, the re-
sponse to an applied stress increment proportional to the pre-
existing stress is also perfectly rigid: the corresponding strain
is exactly zero. For all other stress increment orientations,
the rigid contact network, in the limit of N→�, has to rear-
range �20�. The resulting strain is determined by the geom-
etry of the packing, rather than by some material stiffness.
Thus, using the notations of Sec. IV C, CI is infinite, while
CII=CIII=0. This behavior also entails a one-to-one corre-
spondence between stress and fabric anisotropy, in agree-
ment with Sec. IV B 1. Because of isostaticity, the force dis-
tribution is completely determined by the force network,
whence the relation evidenced in Sec. IV B 2. In this respect,
assemblies of frictionless grains differ from systems with
intergranular friction, in which one given contact network
may support stresses within a finite range in the thermody-
namic limit, for arbitrary large stiffness levels � �61�
�whence vertical parts in stress versus strain plots, as ob-
tained in simulations with models of rigid grains �51,62,63��.
This property of frictional grain assemblies excludes the pos-
sibility of a one-to-one relation between stresses and fabric.

Rigid frictionless grain assemblies, on the other hand,
were reported �20,61� to be devoid of the stress-strain rela-
tions �which depend on loading history� obtained in simula-
tions of model frictional systems �33,34,51�, and classically
modeled, for sands, in soil mechanics �16,17�. This conclu-
sion was based on a statistical analysis of the strain response
to stress increments, which was modeled as a Lévy-
distributed random variable �64�, precluding the regression
of strain fluctuations in the thermodynamic limit. Such re-
sults contrast with the ones obtained with particles interact-
ing with soft potentials, such as Lennard-Jones glasses, in
which case fluctuations around the average stress-strain
curve were explicitly shown to regress in the thermodynamic
limit �65�.

In the present case, the macroscopic mechanical response
is also dominated by packing rearrangements: macroscopic
strains are much larger than typical contact deflections �of
order �−1�. Macroscopic strains, as plotted versus applied
stress ratio along the triaxial test paths in Fig. 13, do not
appear to behave like a Lévy flight trajectory: results pertain-
ing to the two larger sample sizes tend to cluster around the
same average curve. However, the regression of fluctuations
in the limit of N→� is much less clearcut than in the results
of, e.g., Fig. 7: error bars are only very slightly reduced
between N=1372 and N=8788, and still extend to a notable
fraction of averages �typically 30%�. Our data very likely
provide unsufficient statistics because of sample size limita-
tions, and larger systems should be studied. Yet it is tempting
to speculate that large enough samples, for given �, do ap-
proach a well-defined stress-strain behavior for given loading
paths, but that their size should exceed a certain characteris-
tic length ! that diverges in the limit of �→ +�. In this
interpretation, for any given value of �, samples of �linear�
size below ! would exhibit the singular behavior observed in
Ref. �20� �in which rigid contacts were simulated, with a
specific numerical technique exploiting the isostaticity prop-
erty�. Only for samples larger than ! �and hence, for larger

FIG. 12. �Color online� Dominant eigenvalue CI of tensor of
elastic moduli, for Hertzian and linear contact elasticity �N=8788�,
versus principal stress ratio along TE and TC loading paths, com-
pared to the predictions of Eqs. �19� and �20�, depicted, due to the
slight statistical uncertainty, as narrow zones between horizontal
dashed lines.

FIG. 13. �Color online� Evolution of strain �33 with �33 /�11 in
triaxial tests, for N=1372 �red crosses connected by a dotted line�,
N=4000 �brown triangles connected by a dashed line�, and N
=8788 �blue squares connected by a solid line�. Results are aver-
aged over all available samples, and restricted to the macroscopic
solid range.
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and larger samples as � is increased� should one recover a
well-defined stress-strain relationship in monotonic loading.
Further investigations of this conjecture are beyond the
scope of the present paper.

V. DISCUSSION

The present study generalizes the results on the macro-
scopic friction of frictionless bead packs, previously ob-
tained in simple shear, to other loading paths, and proposes a
form of the failure criterion valid for arbitrary stress direc-
tions. This failure condition is somewhat different from the
Mohr-Coulomb condition and best expressed in the Lade-
Duncan form. As previously observed �14�, despite rather
strong finite size effects, the system is able to sustain finite
stress deviators in the macroscopic geometric limit, in which
the Lade-Duncan parameter, evaluated at k�=27.22�0.02, is
to be regarded as a basic geometric property of disordered
sphere assemblies. Changes of volume fraction � as devia-
toric stresses evolve from zero to yield threshold values are
quite small and erratic �in spite of a very slight tendency
toward contractance under small deviator, and to volume in-
crease close to failure� and might be neglected, given statis-
tical uncertainties, in a first approach. Thus � remains ap-
proximately equal to the RCP value. All classical
characterizations of packing geometry and force networks by
scalar or orientation-averaged variables, including the distri-
bution of normal forces, do not distinguish anisotropic equi-
librium states from the initial isotropic structures equilibrated
under hydrostatic pressure.

Thus the equilibrated configurations may be regarded as
anisotropic random close-packing states. Isotropic RCP
states, in the limit of rigid particles, are local minima of
sample volume in configuration space, under the constraint
of impenetrability of particles. Anisotropic ones also mini-
mize the potential energy of the applied stresses, viz.,

W = − V�
	,�

�	��	�,

where strain tensor �= , assumed to be small, has to be defined
with respect to some arbitrary reference configuration. Con-
sequently, they do not maximize volume fraction � and, al-
though stable equilibrium states, do not qualify as “strictly
jammed” according to the definition of Refs. �66,67�. That
their volume fraction is no smaller �and occasionally slightly
larger� than �RCP obtained in isotropic configurations is due
to the multiplicity of different possible equilibrium networks
and minima of potential energies W, which are not connected
by quasistatic trajectories.

Fabric and force anisotropies can be efficiently character-
ized with one coefficient in an expansion in spherical har-
monics. Each one of such coefficients is a function of stress
anisotropy. The existence of such relations is specific to fric-
tionless systems, in which any change of stress direction

tends to entail rearrangements and changes in the contact
network. Meanwhile, as in granular systems with friction,
stresses can be expressed, in good approximation, as combi-
nations of fabric and force anisotropy parameters.

Elastic moduli exhibit similar anomalies in the rigid limit
as in isotropic states, with a nearly uniaxial tensor of elastic
moduli, the dominant eigenvalue of which �the only nonsin-
gular one� expresses the response to load increments parallel
to the preexisting load in stress space. Meanwhile, the
moduli in orthogonal directions vanish in the rigid limit, as
in isotropic systems �and the “density of states” for eigen-
modes is expected to exhibit the same singularities �53��.
These properties can be expected to apply to any situation of
very small force indeterminacy in particle packings.

Our results seem to indicate that a deterministic stress-
strain curve for monotonic loading along given deviatoric
paths should be obtained in the macroscopic limit, thereby
contradicting the conclusions of Ref. �20�, based on an ex-
actly rigid system in 2D, although the simulated samples still
seem too small to reach a clear conclusion about the regres-
sion of strain fluctuations for given applied stresses. This
point obviously deserves further investigations, as well as the
spatial structure and displacement correlations in deforma-
tion and rearrangement mechanisms. The possibility of a di-
verging length scale in the rigid limit of �→ +� �entailing
the noncommutation of the limits of �→ +� and of
N→ +�� should be explored in further simulations of larger
systems with varying stiffness level.

Another issue worth investigating is that of the possible
uniqueness of equilibrium states, in the statistical sense, un-
der a given supported state of stress. Just as the simulation
results appear to support the idea of a unique RCP state
under isotropic pressure �13�, provided a fast enough assem-
bling process bypasses crystal nucleation, the results re-
ported here suggest that the internal state of the packing in
equilibrium could be uniquely determined by the current
value of stresses, whatever the loading history. Such a con-
jecture is, in particular, supported by the observation of a
one-to-one correspondence between stress and all measured
internal state variables, such as fabric or force anisotropy
parameters.

Eventually, we expect that the knowledge of the behavior
of frictionless granular assemblies will be useful in the de-
sign of compaction strategies �lubrication, vibration, cyclic
loading,…�, which can be regarded as methods to circum-
vent the influence of friction �13�. Other interesting perspec-
tives involve the treatment of different particle shapes
�45,68� and polydispersities �69�.
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